Сетевое программирование с Сокетами и Каналами

Одна из сильных сторон Java заключается в безпроблеммной сетевой работе. Дизайнеры сетевой библиотеки Java сделали ее достаточно простой для чтения и записи файлов, за исключением случая, когда «файл» существует на удаленной машине и удаленная машина может решать что ей делать с информацией, которую вы запрашиваете или посылаете. Насколько это возможно, низлежащие детали сетевого взаимодействия были абстрагированы и о них заботится ядро JVM и локальный пакет установки Java. Программная модель, которую вы используете для такого файла, фактически, это обертка сетевого соединения («сокет») с объектом потока, так что в конечном счете вы используете те же вызовы методов, которые вы используете для других потоков. Кроме того, встроенная многопоточность Java исключительно удобна, когда вы имеете дело с такой сетевой возможностью, как обработка множества соединений одновременно.

Этот раздел является вводным в сетевое взаимедействие Java с использованием легких в понимании примеров.

Идентификация машины

Конечно, для того, чтобы передать данные с одной машины на другую необходимо убедиться, что вы подсоединились к определенной машине в сети. Ранние варианты сетей были удовлетворены предоставлением уникальных имен машинам внутри локальной сети. Однако, Java работает в пределах Internet, что требует способа для уникальной идентификации машины из любой точки всего мира. Это выполняется с помощью IP (Internet Protocol) адреса, который может существовать в двух формах:

  1. Привычная форма DNS (Domain Name System). Мое доменное имя — bruceeckel.com, и если у меня есть компьютер, называемый Opus в моем домене, его доменное имя должно быть Opus.bruceeckel.com. Это в точности имя такого рода, которое вы используете при отсылке электронной почты людям, и часто он встроен в адрес World Wide Web.
  2. Альтернативный вариант: вы можете использовать форму из четырех чисел, разделенных точками, например 123.255.28.120.

В обоих случаях IP адрес представляется как 32-х битное число [1] (так как каждое из четырех чисел не может превышать 255), и вы можете получить специальный Java объект для представления этого числа из любой из перечисленных выше форм, используя статический метод InetAddress.getByName( ), который определен в java.net. Результатом будет объект типа InetAddress, который вы можете использовать для создания «сокета», как вы это увидите далее.

В качестве простейшего примера использования InetAddress.getByName() рассмотрим, что произойдет при использовании коммутируемого доступа (dial-up Internet service provider (ISP)). При каждом дозвоне вам назначается временный IP адрес. Но пока вы соединены, ваш IP адрес имеет такую же силу, как и другие IP адреса в Internet. Если кто-либо соединится с вашей машиной использую ваш IP адрес, то он может соединится с Web сервером или FTP сервером, который запущен на вашей машине. Конечно, ему необходимо знать ваш IP адрес, а так как при каждом дозвоне вам назначается новый адрес, то как вы можете определеть какой у вас адрес?

Приведенная ниже программа использует InetAddress.getByName( ) для воспроизведения вашего IP адреса. Для ее использования вы должны знать имя вашего компьютера. Под управлением Windows 95/98 перейдите в «Settings», «Control Panel», «Network» и выберите закладку «Identification». Содержимое в поле «Computer name» является той строкой, которую необходимо поместить в командную строку.

//: c15:WhoAmI.java
// Нахождение вашего сетевого адреса, когда
// вы соединены с Internet'ом.
// {Запускается руками} Должно быть установлено соединение с Internet
// {Args: www.google.com}
import java.net.*;
public class WhoAmI {
public static void main(String[] args) throws Exception {
if (args.length != 1) {
System.err.println("Usage: WhoAmI MachineName");
System.exit
(1);
}
InetAddress a = InetAddress.getByName(args[0]);
System.out.println
(a);
}
}
// /:~

В моем случае, машина называется «peppy». Так что, когда я соединюсь с моим провайдером и запущу программу:

java WhoAmI peppy

Я получу назад сообщение такого типа (конечно же, адрес отличается при каждом новом соединении):

peppy/199.190.87.75

Если я скажу этот адрес моему другу и у меня будет запущен Web Сервер на моем компьютере, он сможет соединится с сервером, перейдя по ссылке http://199.190.87.75 (только до тех пор, пока я остаюсь соединенным во время одной сессии). Иногда это может быть ручным способом распределения информации кому-то еще или использоваться для тестирования конфигурации Web сайта перед размещением его на «реальном» сервере.

Серверы и клиенты

Основное назначение сети состоит в том, чтобы позволить двум машинам соединиться и пообщаться друг с другом. Так как две машины могут найти друг друга, они могут провести милую, двусторонню беседу. Но как они могут найти друг друга? Это похоже на поиск потерянных в парке аттракционов: одна машина стоит в одном месте и слушает, пока другая машина скажет: «Эй, ты где?».

Машина, которая стоит в одном месте, называется сервером, а машина, которая ищет, называется клиентом. Это различие важно лишь до тех пор, пока клиент пробует соединится с сервером. Как только они соединятся, они становятся двумя сторонами коммуникационного процесса и более не имеет значения, какая машина принимала роль сервера, а какая принимала роль клиента.

Таким образом, работа сервера состоит в прослушивании соединения, она выполняется с помощью специального объекта, который вы создаете. Работа клиента состоит в попытке создать соединение с сервером, и это выполняется с помощью специального клиентского объекта, который вы создаете. Как только соединение установлено, вы увидите, что и клиентская, и серверная сторона соединения магическим образом превращается потоковый объект ввода/вывода, таким образом вы можете трактовать соединение, как будто вы читаете и пишете файл. Таким образом, после установки соединения, вы просто используете хорошо знакомые команды ввода/вывода из главы 11. Это одна из прекраснейших особенностей работы по сети в Java.

Тестирование программ без сети

По многим причинам, вы можете не иметь клиентской машины, серверной машины и сети, доступных для тестирования ваших программ. Вы можете выполнять упражнения в обстановке классной комнаты, или, возможно, вы пишите программы, которые еще не достаточно стабильны и не могут быть выложены в сеть. Создатели Internet Protocol учли эту возможность и создали специальный адрес, называемый localhost, IP адрес «локальной заглушки (local loopback)» для тестирования без использования сети. Общий способ для получения такого адреса в Java такой:

InetAddress addr = InetAddress.getByName(null);

Если вы передадите в getByName( ) значение null, метод по умолчанию будет использовать localhost. InetAddress является тем, что вы используете для указания определенной машины, и вы должны произвести его прежде, чем вы можете двинуться далее. Вы не можете манипулировать содержимым InetAddress (но вы можете напечатать его, как это будет показано в следующем примере). Единственный способ, которым вы можете создать InetArddress, это через один из перегруженных статических методов класса getByName( ) (который является тем, что вы уже использовали), getAllByName(), или getLocalHost( ).

Вы также можете получить адрес локальной заглушки, передав строку localhost:

InetAddress.getByName("localhost");

(предполагается, что «localhost» сконфигурирован в таблице «hosts» на вашей машине), или используя цифровую четырехзначную форму для имени, представляющем заглушку:

InetAddress.getByName("127.0.0.1");

Все три формы произовдят одинаковый результат.

Порт: уникальное место внутри машины

IP адреса не достаточно для уникальной идентификации сервера, так как многие сервера могут существовать на одной машине. Каждая IP машина также содержит порты, и когда вы устанавливаете клиента или сервер, вы должны выбрать порт, через который и клиент, и сервер согласны соединиться.

Порт — это не физическое расположение в машине, а программная абстракция (в основном для целей учета). Клиентская программа знает, как соединится к машине через ее IP адрес, но как она может присоединится к определенной службе (потенциально, к одной из многих на этой машине)? Таким образом номер порта стал вторым уровнем адресации. Идея состоит в том, что при запросе определенного порта вы запрашиваете службу, ассоциированную с этим номером порта. Служба времени — простейший пример службы. Обычно каждая служба ассоциируется с уникальным номером порта на определенной серверной машине. Клиент должен предварительно знать, на каком порту запущена нужная ему служба.

Системные службы зарезервировали использование портов с номерам от 1 до 1024, так что вы не можете использовать этот или любой другой порт, про который вы знаете, что он задействован. Первым выбором, например, в этой книге будет порт 8080 (в память многоуважаемого 8-битного процессора 8080 от Intel в моем первом компьютере, CP/M машине).

Сокеты

Сокет — это программная абстракция, используемая для представления «терминалов» соединения между двумя машинами. Для данного соединения есть сокет на каждой машине, и вы можете представить гипотетический «кабель», включенный в сокет. Конечно, физическое оборудование и каблирование между машинами полностью неизвестно. Главное назначение абстракции состоит в том, что мы не должны знать более того, что нам необходимо.

В Java вы создаете сокет, чтобы создать соединение с другой машиной, затем вы получаете InputStream и OutputStream (или, с соответствующими конверторами, Reader и Writer) из сокета, чтобы получить возможность трактовать соединение, как объект потока ввода/вывода. Существует два класса сокетов, основанных на потоках: ServerSocket, который использует сервер для «прослушивания» входящих соединения, и Socket, который использует клиент для инициализации соединения. Как только клиент создаст сокетное соединение, ServerSocket возвратит (посредством метода accept( )) соответствующий Socket, через который может происходить коммуникация на стороне сервера. После этого вы общаетесь в соединении через Socket с Socket’ом и вы трактуете оба конца одинаково, посколько они и являются одним и тем же. На этой стадии вы используете методы getInputStream( ) и getOutputStream( ) для получения соответствующих объектов InputStream’а и outputStream’а для каждого сокета. Они должны быть обернуты внутрь буферных и форматирующих классов точно так же, как и другие объекты потоков, описанные в Главе 11.

Использование термина ServerSocket может показаться другим примером сбивающей с толку схемы именования в библиотеках Java. Вы можете подумать, что ServerSocket лучше было бы назвать «ServerConnector» или как-то подругому, без слова «Socket» внутри. Вы также можете подумать, что ServerSocket и Socket должны оба наследоваться от какого-то общего базового класса. На самом деле, два калсса имеют некоторые общие методы, но не настолько, чтобы дать им общий базовый класс. Вместо этого, работа ServerSocket’а состоит в том, чтобы ждать, пока некоторая машина не присоединится к нему, а затем он возвращает реальный Socket. Вот почему кажется, что ServerSocket назван немножко неправильно, так как его работа состоит не в том, чтобы быть реальным сокетом, а в том, чтобы создавать объект Socket’а, когда кто-то присоединяется к нему.

Однако, ServerSocket создает физический «сервер» или слушающий сокет на хост-машине. Этот сокет слушает входящие соединения, а затем возвращает «связанный» сокет (с определенными локальной и удаленной конечными точками) посредством метода accept( ). Сбивающая часть состоит в том, что оба эти сокета (слушающий и связанный) ассоциированы с одним и тем же серверным сокетом. Слушающий сокет может принять только новый запрос на соединение, а не пакет данных. Так что, не смотря на то, что ServerSocket имеет мало смыла с точки зрения программирования, в нем много смысла «физически».

Когда вы создаете ServerSocket, вы даете ему только номер порта. Вы не даете ему IP адрес, поскольку он уже есть на той машине, на которой он представлен. Однако когда вы создаете Socket, вы должны передать ему и IP адрес, и номер порта, к которому вы хотите присоединиться. (Однако Socket, который возвращается из метода ServerSocket.accept( ) уже содержит всю эту информацию.)

Простейший сервер и клиент

Этот пример покажет простейшее использование серверного и клиентского сокета. Все, что делает сервер, это ожидает соединения, затем использует сокет, полученный при соединении, для создания InputStream’а и OutputStream’а. Они конвертируются в Reader и Writer, которые оборачиваются в BufferedReader и PrintWriter. После этого все, что будет прочитано из BufferedReader’а будет переправлено в PrintWriter, пока не будет получена строка «END», означающая, что пришло время закрыть соединение.

Клиент создает соединение с сервером, затем создает OutputStream и создает некоторую обертку, как и в сервере. Строки текста посылаются через полученный PrintWriter. Клиент также создает InputStream (опять таки, с соответствующей конвертацией и оберткой), чтобы слушать, что говорит сервер (который, в данном случае, просто отсылает слова назад).

И сервер, и клиент используют одинаковый номер порта, а клиент использует адрес локальной заглушки для соединения с сервером на этой же самой машине, так что вы не можете провести тест по сети. (Для некоторых конфигураций вам может понадобиться сетевое соединения для работы программы даже, если вы не используете сетевую коммуникацию.)

Вот сервер:

//: c15:JabberServer.java
// Очень простой сервер, который просто отсылает
// назад все, что посылает клиент.
// {RunByHand}
import java.io.*;
import java.net.*;public class JabberServer {
// Выбираем порт вне пределов 1-1024:
public static final int PORT = 8080;

public static void main(String[] args) throws IOException {
ServerSocket s = new ServerSocket(PORT);
System.out.println
("Started: " + s);
try {
// Блокирует до тех пор, пока не возникнет соединение:
Socket socket = s.accept();
try {
System.out.println("Connection accepted: " + socket);
BufferedReader in =
new BufferedReader(new InputStreamReader(
socket.getInputStream()));
// Вывод автоматически выталкивается из буфера PrintWriter'ом
PrintWriter out = new PrintWriter(new BufferedWriter(
new OutputStreamWriter(socket.getOutputStream())), true);
while (true) {
String str = in.readLine();
if (str.equals("END"))
break;
System.out.println
("Echoing: " + str);
out.println
(str);
}
// Всегда закрываем два сокета...
}
finally {
System.out.println("closing...");
socket.close
();
}
}
finally {
s.close();
}
}
}
// /:~

Вы можете видеть, что для ServerSocket’а необходим только номер порта, а не IP адрес (так как он запускается на локальной машине!). Когда вы вызываете accept( ), метод блокирует выполнение до тех пор, пока клиент не попробует подсоединится к серверу. То есть, сервер ожидает соединения, но другой процесс может выполнятся (смотрите Главу 14). Когда соединение установлено, метод accept( ) возвращает объект Socket, представляющий это соединение.

Здесь тщательно обработана отвественность за очистку сокета. Если конструктор ServerSocket завершится неудачей, программа просто звершится (обратите внимание, что мы должны предположить, что конструктор ServerSocket не оставляет никаких открытых сокетов, если он зваершается неудачей). По этой причине main( ) выбрасывает IOException, так что в блоке try нет необходимости. Если конструктор ServerSocket завершится успешно, то все вызовы методов должны быть помещены в блок try-finally, чтобы убедиться, что блок не будет покинут ни при каких условиях и ServerSocket будет правильно закрыт.

Аналогичная логика используется для сокета, возвращаемого из метода accept( ). Если метод accept( ) завершится неудачей, то мы должны предположить, что сокет не существует и не удерживает никаких ресурсов, так что он не нуждается в очистке. Однако если он закончится успешно, то следующие выражения должны быть помещены в блок try-finally, чтобы при каких-либо ошибках все равно произошла очистка. Позаботится об этом необходимо, потому что сокеты используют важные ресурсы, не относящиеся к памяти, так что вы должны быть прилежны и очищать их (так как в Java нет деструкторов, чтобы сделать это за вас).

И ServerSocket и Socket, производимый методом accept( ), печатаются в System.out. Это означает, что автоматически вызывается их метод toString( ). Вот что он выдаст:

ServerSocket[addr=0.0.0.0,PORT=0,localport=8080]
Socket[addr=127.0.0.1,PORT=1077,localport=8080]

Короче говоря, вы увидите как это соответствует тому, что делает клиент.

Следующая часть программы выглядит, как открытие файла для чтения и записи за исключением того, что InputStream и OutputStream создаются из объекта Socket. И объект InputStream’а и OutputStream’а конвертируются в объекты Reader’а и Writer’а с помощью «классов-конвертеров» InputStreamReader и OutputStreamreader, соответственно. Вы можете также использовать классы из Java 1.0 InputStream и OutoutStream напрямую, но, с точки зрения вывода, есть явное преимущество в использовании этого подхода. Оно проявляется в PrintWriter’е, который имеет перегруженный конструктор, принимающий в качестве второго аргумента флаг типа boolean, указывающий, нужно ли автоматическое выталкивание буфера вывода в конце каждого выражения println( ) (но не print( )). Каждый раз, когда вы записываете в вывод, буфер вывода должен выталкиваться, чтобы информация проходила по сети. Выталкивание важно для этого конкретного примера, поскольку клиент и сервер ожидают строку от другой стороны, прежде, чем приступят к ее обработке. Если выталкивание буфера не произойдет, информация не будет помещена в сеть до тех пор, пока буфер не заполнится, что может привести к многочисленным проблемам в этом примере.

Когда пишите сетевую программу, вам необходимо быть осторожным при использовании автоматического выталкивания буфера. При каждом выталкивании буфера пакеты должны создаваться и отправляться. В данном случае это именно то, что нам надо, так как если пакет, содержащий строку, не будет отослан, то общение между сервером и клиентом остановится. Другими словами, конец строки является концом сообщения. Но во многих случаях, сообщения не ограничиваются строками, так что будет более эффективным использовать автоматическое выталкивание буфера, поэтому позвольте встроенному механизму буфферизации построить и отослать пакет. В таком случае могут быть посланы пакеты большего размера и процесс обработки пойдет быстрее.

Обратите внимание, что фактически все открытые вами потоки, буфферезированы. В конце этой главы есть упражнение, которое покажет вам, что происходит, если вы не буфферезируете потоки (вещи становятся медленнее).

В бесконечном цикле while происходит чтение строк из входного BufferedReader’а и запись информации в System.out и в выходной PrintWriter. Обратите внимание, что вход и выход могут быть любыми потоками, так случилось, что они связаны с сетью.

Когда клиент посылает строку, содержащую «END», программа прекращает цикл и закрывает сокет.

Вот клиент:

//: c15:JabberClient.java
// Очень простой клиент, который просто посылает
// строки на сервер и читает строки,
// посылаемые сервером.
// {RunByHand}
import java.net.*;
import java.io.*;public class JabberClient {
public static void main(String[] args) throws IOException {
// Передаем null в getByName(), получая
// специальный IP адрес "локальной заглушки"
// для тестирования на машине без сети:
InetAddress addr = InetAddress.getByName(null);
// Альтернативно, вы можете использовать
// адрес или имя:
// InetAddress addr =
// InetAddress.getByName("127.0.0.1");
// InetAddress addr =
// InetAddress.getByName("localhost");
System.out.println("addr = " + addr);
Socket socket =
new Socket(addr, JabberServer.PORT);
// Помещаем все в блок try-finally, чтобы
// быть уверенным, что сокет закроется:
try {
System.out.println("socket = " + socket);
BufferedReader in =
new BufferedReader(new InputStreamReader(socket
.getInputStream
()));
// Вывод автоматически Output быталкивается PrintWriter'ом.
PrintWriter out = new PrintWriter(new BufferedWriter(
new OutputStreamWriter(socket.getOutputStream())), true);
for (int i = 0; i < 10; i++) {
out.println("howdy " + i);
String str = in.readLine
();
System.out.println
(str);
}
out.println("END");
}
finally {
System.out.println("closing...");
socket.close
();
}
}
}
// /:~

В main( ) вы можете видеть все три способа получение InetAddress IP адреса локальной заглушки: с помощью null, localhost или путем явного указания зарезервированного адреса 127.0.0.1, если вы хотите соединится с машиной по сети, вы замените это IP адресом машины. Когда печатается InetAddress (с помощью автоматического вызова метода toString( )), то получается результат:

При передачи в getByName( ) значения null, он по умолчанию ищет localhos и затем производит специальныйы адрес 127.0.0.1.

Обратите внимание, что Socket создается при указании и InetAddress’а, и номера порта. Чтобы понять, что это значит, когда будете печатать один из объектов Socket помните, что Интернет соединение уникально определяется четырьмя параметрами: клиентским хостом, клиентским номером порта, серверным хостом и серверным номером порта. Когда запускается сервер, он получает назначаемый порт (8080) на localhost (127.0.0.1). Когда запускается клиент, он располагается на следующем доступном порту на своей машине, 1077 — в данном случае, который так же оказался на той же самой машине (127.0.0.1), что и сервер. Теперь, чтобы передать данные между клиентом и сервером, каждая сторона знает, куда посылать их. Поэтому, в процессе соединения с «известным» сервером клиент посылает «обратный адрес», чтобы сервер знал, куда посылать данные. Вот что вы видите среди выводимого стороной сервера:

Socket[addr=127.0.0.1,port=1077,localport=8080]

Это означает, что сервер просто принимает соединение с адреса 127.0.0.1 и порта 1077 во время прослушивания локального порта (8080). На клиентской стороне:

Socket[addr=localhost/127.0.0.1,PORT=8080,localport=1077]

Это значит, что клиент установил соединение с адресом 127.0.0.1 по порту 8080, используя локальный порт 1077.

Вы заметите, что при каждом повторном запуске клиента номер локального порта увеличивается. Он начинается с 1025 (первый после зарезервированного блока портов) и будет увеличиваться до тех пор, пока вы не перезапустите машину, в таком случае он снова начнется с 1025. (На машинах под управлением UNIX, как только будет достигнут верхний предел диапазона сокетов, номер будет возвращен снова к наименьшему доступному номеру.)

Как только объект Socket будет создан, процесс перейдет к BufferedReader и PrintWriter, как мы это уже видели в сервере (опять таки, в обоих случаях вы начинаете с Socket’а). В данном случае, клиент инициирует обмен путем посылки строки «howdy», за которой следует число. Обратите внимание, что буфер должен опять выталкиваться (что происходит автоматически из-за второго аргумента в конструкторе PrintWriter’а). Если буфер не будет выталкиваться, процесс обмена повиснет, поскольку начальное «howdy» никогда не будет послана (буфер недостаточно заполнен, чтобы отсылка произошла автоматически). Каждая строка, посылаемая назад сервером, записывается в System.out, чтобы проверить, что все работает корректно. Для завершения обмена посылается ранее оговоренный «END». Если клиент просто разорвет соединение, то сервер выбросит исключение.

Вы можете видеть, что аналогичные меры приняты, чтобы быть уверенным в том, что сетевые ресурсы, представляемые сокетом, будут правильно очищены. Для этого используется блок try-finally.

Сокет производит «посвященную» связь, которая остается постоянной до тех пор, пока не будет явного рассоединения. (Посвященная связь может быть рассоединена неявно, если одна из сторон, или посредническая связь соединения рушатся.) Это означает, что два партнера замкнуты в коммуникации и соединение постоянно открыто. Это выглядит, как логический подход к сети, но это вносит дополнительную нагрузку на сеть. Позднее в этой главе вы увидите отличный подход к сетевому взаимодействию, при котором соединение является временным.

Обслуживание множества клиентов

JabberServer работает, но он может обработать только одного клиента одновременно. В обычных серверах вы захотите, чтобы была возможность иметь дело со многими клиентами одновременно. Ответом является многопоточность, и в языках, которые не поддерживают многопоточность напрямую, это означает что вы встретите все возможные трудности. В Главе 14 вы видели, что многопоточность в Java проста насколько это возможно, учитывая это, можно сказать, что многопоточность весьма сложная тема. Поскольку нити (потоки) в Java достаточно прамолинейны, то создание сервера, который обрабатывает несколько клиентов, относительно простое заняте.

Основная схема состоит в создании единственного ServerSocket’а на сервере и вызове метода accept( ) для ожидания новых соединений. Когда accept( ) возвращается, вы получаете результирующий сокет и используете его для создания новой нити (потока), работа которой будет состоять в ослуживании определенного клиента. Затем вы вызовите метод accept( ) снова, чтобы подождать нового клиента.

В следующем коде сервера вы можете видеть, что он очень похож на пример JabberServer.java, за исключением того, что все операции по обслуживанию определенного клиента былы помещены внутрь отдельного thread-класса:

//: c15:MultiJabberServer.java
// Сервер, который использует многопоточность
// для обработки любого числа клиентов.
// {RunByHand}
import java.io.*;
import java.net.*;class ServeOneJabber extends Thread {
private Socket socket;
private BufferedReader in;
private PrintWriter out;

public ServeOneJabber(Socket s) throws IOException {
socket = s;
in =
new BufferedReader(new InputStreamReader(socket.getInputStream()));
// Включаем автоматическое выталкивание:
out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(socket
.getOutputStream
())), true);
// Если любой из вышеприведенных вызовов приведет к
// возникновению исключения, то вызывающий отвечает за
// закрытие сокета. В противном случае, нить
// закроет его.
start(); // вызываем run()
}

public void run() {
try {
while (true) {
String str = in.readLine();
if (str.equals("END"))
break;
System.out.println
("Echoing: " + str);
out.println
(str);
}
System.out.println("closing...");
}
catch (IOException e) {
System.err.println("IO Exception");
}
finally {
try {
socket.close();
}
catch (IOException e) {
System.err.println("Socket not closed");
}
}
}
}

public class MultiJabberServer {
static final int PORT = 8080;

public static void main(String[] args) throws IOException {
ServerSocket s = new ServerSocket(PORT);
System.out.println
("Server Started");
try {
while (true) {
// Блокируется до возникновения нового соединения:
Socket socket = s.accept();
try {
new ServeOneJabber(socket);
}
catch (IOException e) {
// Если завершится неудачей, закрывается сокет,
// в противном случае, нить закроет его:
socket.close();
}
}
}
finally {
s.close();
}
}
}
// /:~

Нить ServeOneJabber принимает объект Socket’а, который производится методом accept( ) в main( ) при каждом новом соединении с клиентом. Затем, как и прежде, с помощью Socket, создается BufferedReader и PrintWriter с возможностью автоматического выталкивания буфера. И наконец, вызывается специальный метод нити start( ). Здесь выполняются те же действия, что и в предыдущем примере: читается что-то из сокета и затем отсылается обратно до тех пор, пока не будет прочитан специальный сигнал «END».

Ответственность за очистку сокета должна быть, опять таки, внимательно спланирована. В этом случае, сокет создается вне ServeOneJabber, так что ответственность может быть совместная. Если конструктор ServeOneJabber завершится неудачей, он просто выбросит исключение тому, кто его вызвал, и кто должен очистить нить. Но если конструктор завершился успешно, то объект ServeOneJabber принимает ответственность за очистку нити на себя, в своем методе run( ).

Обратите внимание на упрощенность MultiJabberServer. Как и прежде создается ServerSocket и вызывается метод accept( ), чтобы позволить новое соединение. Но в это время возвращаемое значение метода accept( ) (сокет) передается в конструктор для ServeOneJabber, который создает новую нить для обработки этого соединения. Когда соединение завершиется, нить просто умирает.

Если создание ServerSocket’а проваливается, то из метода main( ), как и прежде, выбрасывается исключение. Но если создание завершается успешно, внешний блок try-finally гарантирует очистку. Внутренний try-catch гарантирует только от сбоев в конструкторе ServeOneJabber. Если конструктор завершится успешно, то нить ServeOneJabber закроет соответствующий сокет.

Для проверки этого сервера, который реально обрабатывает несколько клиентов, приведенная ниже программа создает несколько клиентов (используя нити), которые соединяются с одним и тем же сервером. Максимальное допустимое число нитей определяется переменной final int MAX_THREADS.

//: c15:MultiJabberClient.java
// Клиент, который проверяет MultiJabberServer,
// запуская несколько клиентов.
// {RunByHand}
import java.net.*;
import java.io.*;class JabberClientThread extends Thread {
private Socket socket;
private BufferedReader in;
private PrintWriter out;
private static int counter = 0;
private int id = counter++;
private static int threadcount = 0;

public static int threadCount() {
return threadcount;
}

public JabberClientThread(InetAddress addr) {
System.out.println("Making client " + id);
threadcount++;
try {
socket = new Socket(addr, MultiJabberServer.PORT);
}
catch (IOException e) {
System.err.println("Socket failed");
// Если создание сокета провалилось,
// ничего ненужно чистить.
}
try {
in = new BufferedReader(new InputStreamReader(socket
.getInputStream
()));
// Включаем автоматическое выталкивание:
out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(
socket.getOutputStream())), true);
start
();
}
catch (IOException e) {
// Сокет должен быть закрыт при любой
// ошибке, кроме ошибки конструктора сокета:
try {
socket.close();
}
catch (IOException e2) {
System.err.println("Socket not closed");
}
}
// В противном случае сокет будет закрыт
// в методе run() нити.
}

public void run() {
try {
for (int i = 0; i < 25; i++) {
out.println("Client " + id + ": " + i);
String str = in.readLine
();
System.out.println
(str);
}
out.println("END");
}
catch (IOException e) {
System.err.println("IO Exception");
}
finally {
// Всегда закрывает:
try {
socket.close();
}
catch (IOException e) {
System.err.println("Socket not closed");
}
threadcount--; // Завершаем эту нить
}
}
}

public class MultiJabberClient {
static final int MAX_THREADS = 40;

public static void main(String[] args) throws IOException,
InterruptedException
{
InetAddress addr = InetAddress.getByName(null);
while (true) {
if (JabberClientThread.threadCount() < MAX_THREADS)
new JabberClientThread(addr);
Thread.currentThread
().sleep(100);
}
}
}
// /:~

Конструктор JabberClientThread принимает InetAddress и использует его для открытия сокета. Вероятно, вы заметили шаблон: сокет всегда используется для создания определенного рода объектов Reader’а и Writer’а (или InputStream и/или OutputStream), которые являются тем единственным путем, которым может быть использован сокет. (Вы можете, конечно, написать класс или два для автоматизации этого процесса вместо набора этого текста, если вас это беспокоит.) Далее, start( ) выполняет инициализацию нити и запуск run( ). Здесь сообщение посылается на сервер, а информация с сервера отображается на экране. Однако, нить имеет ограниченноен время жизни и, в конечном счете, завершается. Обратите внимание, что сокет очищается, если конструктор завершился неудачей после создания сокета, но перед тем, как конструктор завершится. В противном случае, ответственность за вызов close( ) для сокета ложиться на метод run( ).

Threadcount хранит информацию о том, сколько в настоящее время существует объектов JabberClientThread. Эта переменная инкрементируется, как часть конструктора и декрементируется при выходе из метода run( ) (что означает, что нить умерла). В методе MultiJabberClient.main( ) вы можете видеть, что количество нитей проверяется, и если их много, то нить более не создается. Затем метод засыпает. Таким образом, некоторые нити, в конечном счете, умрут, и другие будут созданы. Вы можете поэкспериментировать с MAX_THREADS, чтобы увидеть, когда ваша конкретная система почувствует затруднения со множеством соединений.

Дейтаграммы

Пример, который вы недавно видели, использует Transmission Control Protocol (TCP, также известный, как сокет, основанный на потоках), который предназначен для наибольшей надежности и гарантии, что данные будут доставлены. Он позволяет передавать повторно потерянные данные, он обеспечивает множественные пути через различные маршрутизаторы в случае, если один из них отвалится, а байты будут доставлены в том порядке, в котором они посланы. Весь этот контроль и надежность добавляют накладные расходы: TCP сильно перегружен.

Существует второй потокол, называемый User Datagram Protocol (UDP), который не гарантирует, что пакет будет доставлен и не гарантирует, что пакеты достигнут точки назначения в том же порядке, в котором они были отправлены. Он называется «ненадежным протоколом» (TCP является «надежным протоколом»), что звучит плохо, но так как он намного быстрее, он может быть полезнее. Существуют приложения, такие как аудио сигнал, в которых не критично, если несколько пакетов потеряются здесь или там, а скорость жизненно необходима. Или например сервер времени, для которого реально не имеет значения, если одно из сообщений будет потеряно. Также, некоторые приложения могут быть способны отправлять UDP сообщения к серверу и затем считать, если нет ответа в разумный период времени, что сообщения были потеряны.

Обычно вы будете выполнять ваше прямое сетевое программирование с помощью TCP, и только иногда вы будете использовать UDP. Есть более общее толкование UDP, включая пример, в первой редакции этой книги (доступра на CR-ROM’е, сопровождающем это книгу или может быть свободно загружено с www.BruceEckel.com).

Использование URL’ов из апплета

Для апплета есть возможность стать причиной отображения любого URL с помощью Web броузера, в котором запущен апплет. Вы можете сделать это с помощью следующей строки:

getAppletContext().showDocument(u);

в которой u является объектом типа URL. Вот простой пример, который перенаправляет вас на другую страницу. Хотя вы просто перенаправляете на HTML страницу, вы можете также перенаправить на вывод, который дает CGI программа.

//: c15:ShowHTML.java
// <applet code=ShowHTML width=100 height=50>
// </applet>
import javax.swing.*;
import java.awt.*;import java.awt.event.*;

import java.net.*;

import java.io.*;

import com.bruceeckel.swing.*;

public class ShowHTML extends JApplet {
JButton send = new JButton("Go");
JLabel l =
new JLabel();

public void init() {
Container cp = getContentPane();
cp.setLayout
(new FlowLayout());
send.addActionListener
(new Al());
cp.add
(send);
cp.add
(l);
}

class Al implements ActionListener {
public void actionPerformed(ActionEvent ae) {
try {
// Это может быть CGI программа вместо
// HTML страницы.
URL u = new URL(getDocumentBase(), "FetcherFrame.html");
// Отображается вывод URL с помощью
// Web броузера, как обычная страница:
getAppletContext().showDocument(u);
}
catch (Exception e) {
l.setText(e.toString());
}
}
}

public static void main(String[] args) {
Console.run(new ShowHTML(), 100, 50);
}
}
// /:~

Красота класса URL состоит в том, что он отлично защищает вас. Вы можете соединится с Web серверами без знания многого из того, что происходит за занавесом.

Чтение файла с сервера

Вариация приведенной выше программы, читающей файл, расположенный на сервере. В этом случае файл указывается клиентом:

//: c15:Fetcher.java
// <applet code=Fetcher width=500 height=300>
// </applet>
import javax.swing.*;
import java.awt.*;import java.awt.event.*;

import java.net.*;

import java.io.*;

import com.bruceeckel.swing.*;

public class Fetcher extends JApplet {
JButton fetchIt = new JButton("Fetch the Data");
JTextField f =
new JTextField("Fetcher.java", 20);
JTextArea t =
new JTextArea(10, 40);

public void init() {
Container cp = getContentPane();
cp.setLayout
(new FlowLayout());
fetchIt.addActionListener
(new FetchL());
cp.add
(new JScrollPane(t));
cp.add
(f);
cp.add
(fetchIt);
}

public class FetchL implements ActionListener {
public void actionPerformed(ActionEvent e) {
try {
URL url = new URL(getDocumentBase(), f.getText());
t.setText
(url + "n");
InputStream is = url.openStream
();
BufferedReader in =
new BufferedReader(
new InputStreamReader(is));
String line;
while ((line = in.readLine()) != null)
t.append(line + "n");
}
catch (Exception ex) {
t.append(ex.toString());
}
}
}

public static void main(String[] args) {
Console.run(new Fetcher(), 500, 300);
}
}
// /:~

Создание объекта URL похоже на предыдущий пример — getDocumentBase( ) является начальной точкой, как и прежде, но в то же время, имя файла читается из JTextField. Как только объект URL создан, его строковая версия помещается в JTextArea, так что вы можем видеть, как он выглядит. Затем из URL’а получается InputStream, который в данном случае может просто производить поток символов из файла. После конвертации в Reader и буферизации, каждая строка читается и добавляется в JTextArea. Обратите внимание, что JTextArea помещается внутрь JScrollPane, так что скроллирование обрабатывается автоматически.

Мультиплексирование, Основанное на Переключении в JDK 1.4

Когда вы читаете из сокета или пишете в него, вам нужно сделать передачу данных рациональной. Давайте рассмотрим сначала операцию записи. Когда вы пишите данные на уровне приложения (TCP или UDP сокет), вы пишите данные в рабочий буфер системы. Эти данные, в конечном счете, формируют (TCP или UDP) пакеты, которые необходимо передать на машину назначения по сети. Когда вы пишите в сокет и, если в буфере нет достаточно доступного места, запись может блокироваться. Если вы читаете из сокета и нет достаточного количества информации для чтения из буфера операционной системы, куда попадают данные после получения из сети, чтение будет блокировано. Если есть нить (поток) для операции чтения или записи, эта нить не может делать ничего и может стать причиной снижения произовдительности вашей программы. До появления JDK 1.4 не было способа вывести такую нить из заблокированного состояния. С помощью каналов вы можете выполнить асинхронную операцию закрытия на канале и нить, блокированная на этом канале примет AsynchronousCloseException.

Асинхронный ввод-вывод в Java достигается тем же способом, который дает вызов метода select( ) в UNIX подобных системах. Вы можете дать список дескрипторов (чтения или записи) в функцию select( ) и она отследит этот дескриптор на возникновение некоторых событий. Для дескриптора, представляющего сокет, из которого вы читаете, данные в буфере операционной системы для этого буфера представляются событием. Для дескрипторов, представляющих сокеты, в которые вы пишите, наличие места для записи во внутреннем буфере операционной системы для этого сокета представляется событием. Поэтому вызов метода select( ) исследует различные дескрипторы для проверки событий.

Что, если вы просто читаете и пишите в дескриптор когда бы вы не захотели? Select может обрабатывать множество дескрипторов, что позволит вам мониторить множество сокетов. Рассмотрим пример чат-сервера, когда сервер имеет соединения с различными клиентами. Тип данных, достигающих сервера, перемежается. Сервер предназначен для чтения данных из сокета и отображения их в GUI, то есть для показа каждому клиенту — чтобы достич этого, вы читаете данные от каджого клиента и пишите эти данные всем остальным клиентам. Например 5 клиентов: 1, 2, 3, 4 и 5. Если сервер запрограммирован на выполнение чтения от 1 и записи в 2, 3, 4 и 5, затем происходит чтения от 2 и запись в 1, 3, 4, 5 и так далее, то может так случиться, что пока нить сервера заблокирована на чтении одного из клиентских сокетов, могут появиться данные на других сокетах. Одно из решений состоит в том, чтобы создавать различные нити для кадого клиента (до JDK1.4). Но это не масштабируемое решение. Вместо этого вы можете иметь селектор, основанный на механизме, следящем за всеми клиентскими сокетами. Он знает какой сокет имеет данные для чтения без блокирования. Но если единственная нить выполняет эту работу (выбор и запись каждому клиенту) он не будет хорошо откликаться. Таким образом в таких ситуациях одна нить мониторит сокеты на чтение, выбирает сокет, из которого можно осуществить чтение, и делегирует остальную ответственность (запись другим клиентам) другой нити (нитям) или пулу нитей.

Этот шаблон называется шаблоном реактора, когда события отсоединяются от действия, ассоциированного с событиями (Pattern Oriented Software Architecture — Doug Schmidt).

В JDK 1.4 вы создаете канал, регестрируете объект Селектора в канале, который (объект) будет следить за событиями в канале. Многие каналы регестрируют один и тот же объект Селектора. Единственная нить, которая вызывает Selector.select(), наблюдает множество каналов. Каждый из классов ServerSocket, Socket и DatagramSocket имеют метод getChannel( ), но он возвращает null за исключением того случая, когда канал создается с помощью вызова метода open( ) (DatagramChannel.open( ), SocketChannel.open( ), ServerSocketChannel.open( )). Вам необходимо ассоциировать сокет с этим каналом.

Вы мультиплексируете несколько каналов (то есть сокеты), используя Селектор. Статический вызов Selector.select( ) блокирует выполнение до возникновения события в одном из каналов. Существует так же и не блокирующая версия этого метода, которая принимает количество милисекунд для засыпания или блокирования до того момента, когда вызов метода завершится.

ByteBuffer используется для копирования данных из канала и в канал. ByteBuffer является потоком октетов и вы декодируете этот поток, как символы. Со стороны клиента в MultiJabberClient.java это выполняется путем использования классов Writer’а и OutputStreamWriter’а. Эти классы конвертируют символы в поток байтов.

Приведенная ниже программа NonBlockingIO.java объясняет, как вы можете использовать Селектор и Канал для выполнения мультиплексирования. Эта программа требует запущенного Сервера. Она может стать причиной исключения на сервере, но ее назначение не в коммуникации с сервером, а в том, чтобы показать, как работает select( ).

//: TIEJ:X1:NonBlockingIO.java
// Сокет и Селектор сконфигурированы для не блокированного
// Соединения с JabberServer.java
// {RunByHand}
import java.net.*;
import java.nio.channels.*;
import java.util.*;
import java.io.*;
/**
* Цель: Показать как использовать селектор. Нет чтения/записи, просто
* показывается готовность к совершению операции.
*
* Алгоритм: -> Создаем селектор. -> Создаем канал -> Связываем сокет,
* ассоциированный с каналом, с
<клиентским портом> -> Конфигурируем канал, как
* не блокирующий -> Регестрируем канал в селекторе. -> Вызываем метод select( ),
* чтобы он блокировал выполнение до тех пор, пока канал не будет готов. (как
* это предполагается методом select(long timeout) -> Получаем множество ключей,
* относящихся к готовому каналу для работы, основной интерес состоит в том,
* когда они зарегестрированя с помощью селектора. -> Перебираем ключи. -> Для
* каждого ключа проверяем, что соответствующий канал готов к работе, в которой
* он заинтересован. -> Если он готов, печатаем сообщение о готовности.
*
* Примечание: -> Необходим запущенный MultiJabberServer на локальной машине. Вы
* запускаете его и соединяетесь с локальным MultiJabberServer -> Он может стать
* причиной исключения в MultiJabberServer, но это исключение ожидаемо.
*/
public class NonBlockingIO {
public static void main(String[] args) throws IOException {
if (args.length < 2) {
System.out.println("Usage: java <client port> <local server port>");
System.exit
(1);
}
int cPort = Integer.parseInt(args[0]);
int sPort = Integer.parseInt(args[1]);
SocketChannel ch = SocketChannel.open
();
Selector sel = Selector.open
();
try {
ch.socket().bind(new InetSocketAddress(cPort));
ch.configureBlocking
(false);
// Канал заинтересован в выполнении чтения/записи/соединении
ch.register(sel, SelectionKey.OP_READ | SelectionKey.OP_WRITE
| SelectionKey.OP_CONNECT
);
// Разблокируем, когда готовы к чтению/записи/соединению
sel.select();
// Ключи, относящиеся к готовому каналу, канал заинтересован
// в работе, которая может быть выполненаin can be
// без блокирования.
Iterator it = sel.selectedKeys().iterator();
while (it.hasNext()) {
SelectionKey key = (SelectionKey) it.next();
it.remove
();
// Если связанный с ключом канал готов к соединению?
// if((key.readyOps() & SelectionKey.OP_CONNECT) != 0) {
if (key.isConnectable()) {
InetAddress ad = InetAddress.getLocalHost();
System.out.println
("Connect will not block");
// Вы должны проверить возвращаемое значение,
// чтобы убедиться, что он соединен. Этот не блокированный
// вызов может вернуться без соединения, когда
// нет сервера, к которому вы пробуете подключиться
// Поэтому вы вызываете finishConnect(), который завершает
// операцию соединения.
if (!ch.connect(new InetSocketAddress(ad, sPort)))
ch.finishConnect();
}
// Если канал, связанный с ключом, готов к чтению?
// if((key.readyOps() & SelectionKey.OP_READ) != 0)
if (key.isReadable())
System.out.println("Read will not block");
// Готов ли канал, связанный с ключом, к записи?
// if((key.readyOps() & SelectionKey.OP_WRITE) != 0)
if (key.isWritable())
System.out.println("Write will not block");
}
}
finally {
ch.close();
sel.close
();
}
}
}
// /:~

Как указано выше, вам необходимо создать канал, используя вызов метода open( ). SocketChannel.open( ) создает канал. Так как он наследован от AbstractSelectableChannel (DatagramChannel и SocketChannel), он имеет функциональность для регистрации себя в селекторе. Вызов метода регистрации совершает это. В качестве аргумента он принимает Селектор для регистрации канала, и события, которые интересны для этого канала. Здесь показано, что SocketChannel заинтересован в соединении, чтении и записи — поэтому в вызове метода регистрации указано SelectionKey.OP_CONNECT, SelectionKey.OP_READ и SelectionKey.OP_WRITE наряду с Селектором.

Статический вызов метода Selector.select( ) наблюдает все каналы, зарегистрированные в нем, относительно тех событий, которые указаны (второй аргумент при регистрации). Вы можете иметь каналы, заинтересованные в нескольких событиях.

Следующий пример работает так же, как и JabberClient1.java, но использует Селектор.

//: TIEJ:X1:JabberClient1.java
// Очень простой клиент, которй просто посылает строки на сервер
// и читает строки, посылаемые сервером.
// {RunByHand}
import java.net.*;
import java.util.*;
import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.charset.*;
public class JabberClient1 {
public static void main(String[] args) throws IOException {
if (args.length < 1) {
System.out.println("Usage: java JabberClient1 <client-port>");
System.exit
(1);
}
int clPrt = Integer.parseInt(args[0]);
SocketChannel sc = SocketChannel.open
();
Selector sel = Selector.open
();
try {
sc.configureBlocking(false);
sc.socket
().bind(new InetSocketAddress(clPrt));
sc.register
(sel, SelectionKey.OP_READ | SelectionKey.OP_WRITE
| SelectionKey.OP_CONNECT
);
int i = 0;
// По причине ассинхронной природы, вы не знаете
// когда чтение и запись закончены, поэтому вам необходимо
// следить за этим, переменная boolean written используется для
// переключения между чтением и записью. Во время записи
// отосланные назад символы должны быть прочитаны.
// Переменная boolean done используется для проверки, когда нужно
// прервать цикл.
boolean written = false, done = false;
// JabberServer.java, которому этот клиент подсоединяется, пишет с
// помощью
// BufferedWriter.println(). Этот метод выполняет
// перекодировку в соответствии с кодовой страницей по умолчанию
String encoding = System.getProperty("file.encoding");
Charset cs = Charset.forName
(encoding);
ByteBuffer buf = ByteBuffer.allocate
(16);
while (!done) {
sel.select();
Iterator it = sel.selectedKeys
().iterator();
while (it.hasNext()) {
SelectionKey key = (SelectionKey) it.next();
it.remove
();
sc =
(SocketChannel) key.channel();
if (key.isConnectable() && !sc.isConnected()) {
InetAddress addr = InetAddress.getByName(null);
boolean success = sc.connect(new InetSocketAddress(
addr, JabberServer.PORT));
if (!success)
sc.finishConnect();
}
if (key.isReadable() && written) {
if (sc.read((ByteBuffer) buf.clear()) > 0) {
written = false;
String response = cs
.decode
((ByteBuffer) buf.flip()).toString();
System.out.print
(response);
if (response.indexOf("END") != -1)
done = true;
}
}
if (key.isWritable() && !written) {
if (i < 10)
sc.write(ByteBuffer.wrap(new String("howdy " + i
+
'n').getBytes()));
else if (i == 10)
sc.write(ByteBuffer.wrap(new String("ENDn")
.getBytes()));
written =
true;
i++;
}
}
}
}
finally {
sc.close();
sel.close
();
}
}
}
// /:~

Следующий пример показывает простой механизм, основанный на селекторе, для MultiJabberServer, обсуждаемый ранее. Этот сервер работает таким же образом, как и старый сервер, но он более эффективен в том, что он не требует отдельной нити для обработки кадого клиента.

//: TIEJ:X1:MultiJabberServer1.java
// Имеет туж е семантику, что и многопоточный
// MultiJabberServer
// {RunByHand}
import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.charset.*;
import java.util.*;
/**
* Сервер принимает соединения не блокирующим способом. Когда соединение
* установлено, создается сокет, который регистрируется с селектором для
* чтения/записи. Чтение/запись выполняется над этим сокетом, когда селектор
* разблокируется. Эта программа работает точно так же, как и MultiJabberServer.
*/
public class MultiJabberServer1 {
public static final int PORT = 8080;
public static void main(String[] args) throws IOException {
// Канал будет читать данные в ByteBuffer, посылаемые
// методом PrintWriter.println(). Декодирование этого потока
// байт требует кодовой страницы для кодировки по умолчанию.
String encoding = System.getProperty("file.encoding");
// Инициализируем здесь, так как мы не хотим создавать новый
// экземпляр кодировки каждый раз, когда это необходимо
// Charset cs = Charset.forName(
// System.getProperty("file.encoding"));
Charset cs = Charset.forName(encoding);
ByteBuffer buffer = ByteBuffer.allocate
(16);
SocketChannel ch =
null;
ServerSocketChannel ssc = ServerSocketChannel.open
();
Selector sel = Selector.open
();
try {
ssc.configureBlocking(false);
// Локальныйы адрес, на котором он будет слушать соединения
// Примечание: Socket.getChannel() возвращает null, если с ним не
// ассоциирован канал, как показано ниже.
// т.е выражение (ssc.socket().getChannel() != null) справедливо
ssc.socket().bind(new InetSocketAddress(PORT));
// Канал заинтересован в событиях OP_ACCEPT
SelectionKey key = ssc.register(sel, SelectionKey.OP_ACCEPT);
System.out.println
("Server on port: " + PORT);
while (true) {
sel.select();
Iterator it = sel.selectedKeys
().iterator();
while (it.hasNext()) {
SelectionKey skey = (SelectionKey) it.next();
it.remove
();
if (skey.isAcceptable()) {
ch = ssc.accept();
System.out.println
("Accepted connection from:"
+ ch.socket());
ch.configureBlocking
(false);
ch.register
(sel, SelectionKey.OP_READ);
}
else {
// Обратите внимание, что не выполняется проверка, если
// в канал
// можно писать или читать - для упрощения.
ch = (SocketChannel) skey.channel();
ch.read
(buffer);
CharBuffer cb = cs.decode
((ByteBuffer) buffer.flip());
String response = cb.toString
();
System.out.print
("Echoing : " + response);
ch.write
((ByteBuffer) buffer.rewind());
if (response.indexOf("END") != -1)
ch.close();
buffer.clear
();
}
}
}
}
finally {
if (ch != null)
ch.close();
ssc.close
();
sel.close
();
}
}
}
// /:~

Здесь приведена простейшая реализация Пула Нитей. В этой реализации нет полинга (занят-ожидает) нитей. Она полностью основана на методах wait( ) и notify( ).

//: TIEJ:X1:Worker.java
// Instances of Worker are pooled in threadpool
// {Clean: WorkerErr.log, WorkerErr.log.lck}
// {RunByHand}
import java.io.*;
import java.util.logging.*;
public class Worker extends Thread {
public static final Logger logger = Logger.getLogger("Worker");
private String workerId;
private Runnable task;
// Необходима ссылка на пул нитей в котором существует нить, чтобы
// нить могла добавить себя в пул нитей по завершению работы.
private ThreadPool threadpool;
static {
try {
logger.setUseParentHandlers(false);
FileHandler ferr =
new FileHandler("WorkerErr.log");
ferr.setFormatter
(new SimpleFormatter());
logger.addHandler
(ferr);
}
catch (IOException e) {
System.out.println("Logger not initialized..");
}
}
public Worker(String id, ThreadPool pool) {
workerId = id;
threadpool = pool;
start
();
}

// ThreadPool, когда ставит в расписание задачу, использует этот метод
// для делегирования задачи Worker-нити. Кроме того для установки
// задачи (типа Runnable) он также переключает ожидающий метод
// run() на начало выполнения задачи.
public void setTask(Runnable t) {
task = t;
synchronized (this) {
notify();
}
}

public void run() {
try {
while (!threadpool.isStopped()) {
synchronized (this) {
if (task != null) {
try {
task.run(); // Запускаем задачу
}
catch (Exception e) {
logger.log(Level.SEVERE,
"Exception in source Runnable task", e);
}
// Возвращает себя в пул нитей
threadpool.putWorker(this);
}
wait();
}
}
System.out.println(this + " Stopped");
}
catch (InterruptedException e) {
throw new RuntimeException(e);
}
}

public String toString() {
return "Worker : " + workerId;
}
}
// /:~

Основной алгоритм:
while true:

  1. Проверить очередь задач.
  2. Если она пуста, подождать, пока в очередь будет добавлена задача.
    (вызов метода addTask( ) добавляет задачу и уведомляет очередь для разблокирования)
  3. Пробуем получить рабочую (Worker) нить из пула нитей.
  4. Если нет ни одной доступной нити, ожидаем в пуле нитей.
    (Когда нить освободится, она уведомит пул нитей для разблокировки)
  5. На этой стадии есть задачи в очереди и есть свободная рабочая нить.
  6. Делегируем задачу из очереди рабочей нити.

end while:

//: TIEJ:X1:ThreadPool.java
// Пул нитей, которые выполняют задачи.
// {RunByHand}
import java.util.*;
public class ThreadPool extends Thread {
private static final int DEFAULT_NUM_WORKERS = 5;
private LinkedList workerPool = new LinkedList(),
taskList =
new LinkedList();
private boolean stopped = false;
public ThreadPool() {
this(DEFAULT_NUM_WORKERS);
}

public ThreadPool(int numOfWorkers) {
for (int i = 0; i < numOfWorkers; i++)
workerPool.add(new Worker("" + i, this));
start
();
}

public void run() {
try {
while (!stopped) {
if (taskList.isEmpty()) {
synchronized (taskQueue) {
// Если очередь пустая, подождать, пока будет добавлена
// задача
taskList.wait();
}
}
else if (workerPool.isEmpty()) {
synchronized (workerPool) {
// Если нет рабочих нитей, подождать, пока
// пока не появится
workerPool.wait();
}
}
// Запускаем следующую задачу из расписания задач
getWorker().setTask((Runnable) taskList.removeLast());
}
}
catch (InterruptedException e) {
throw new RuntimeException(e);
}
}

public void addTask(Runnable task) {
taskList.addFirst(task);
synchronized (taskList) {
taskList.notify(); // Если добавлена новая задача, уведомляем
}
}

public void putWorker(Worker worker) {
workerPool.addFirst(worker);
// Здесь может быть случай, когда вы будете иметь пул из 5 нитей,
// а будет требоваться больше. Это происходит тогда, когда требуется
// рабочая нить,
// но ее нет (свободной), тогда просто блокируем пул нитей.
// Это событие, при котором появляется свободная рабочая нить в пуле
// нитей
// Поэтому эта нить посылает уведомление и разблокирует
// нить ThreadPool, ожидающую пул нитей
synchronized (workerPool) {
workerPool.notify();
}
}

private Worker getWorker() {
return (Worer) workerPool.removeLast();
}

public boolean isStopped() {
return stopped;
}

public void stopThreads() {
stopped = true;
Iterator it = workerPool.iterator
();
while (it.hasNext()) {
Worker w = (Worker) it.next();
synchronized (w) {
w.notify();
}
}
}
// Junit test

public void testThreadPool() {
ThreadPool tp = new ThreadPool();
for (int i = 0; i < 10; i++) {
tp.addTask(new Runnable() {
public void run() {
System.out.println("A");
}
})
;
}
tp.stopThreads();
}
}
// /:~

Следующий пример MultiJabberServer2.java использует пул нитей. Это шаблон Реактора. Как установлено выше, события отделяются от ассоциированных с ними действий. Пул нитей ассинхронно разделяет действия, ассоциированные с событиями. В системах масштаба предприятия такое разделение обычно достигается путем использования Системы Cообщений Java — Java Messaging System (JMS).

//: TIEJ:X1:MultiJabberServer2.java
// Семантика аналогична MultiJabberServer1, с использованием пула нитей.
// {RunByHand}
import java.io.*;
import java.net.*;import java.nio.*;

import java.nio.channels.*;

import java.nio.charset.*;

import java.util.*;

class ServeOneJabber implements Runnable {
private SocketChannel channel;
private Selector sel;

public ServeOneJabber(SocketChannel ch) throws IOException {
channel = ch;
sel = Selector.open
();
}

public void run() {
ByteBuffer buffer = ByteBuffer.allocate(16);
boolean read = false, done = false;
String response =
null;
try {
channel.register(sel, SelectionKey.OP_READ | SelectionKey.OP_WRITE);
while (!done) {
sel.select();
Iterator it = sel.selectedKeys
().iterator();
while (it.hasNext()) {
SelectionKey key = (SelectionKey) it.next();
it.remove
();
if (key.isReadable() && !read) {
if (channel.read(buffer) > 0)
read = true;
CharBuffer cb = MultiJabberServer2.CS
.decode
((ByteBuffer) buffer.flip());
response = cb.toString
();
}
if (key.isWritable() && read) {
System.out.print("Echoing : " + response);
channel.write
((ByteBuffer) buffer.rewind());
if (response.indexOf("END") != -1)
done = true;
buffer.clear
();
read =
false;
}
}
}
}
catch (IOException e) {
// будет поймано Worker.java и залогировано.
// Необходимо выбросить исключение времени выполнения, так как мы не
// можем
// оставить IOException
throw new RuntimeException(e);
}
finally {
try {
channel.close();
}
catch (IOException e) {
System.out.println("Channel not closed.");
// Выбрасываем это, чтобы рабочая нить могла залогировать.
throw new RuntimeException(e);
}
}
}
}

public class MultiJabberServer2 {
public static final int PORT = 8080;
private static String encoding = System.getProperty("file.encoding");
public static final Charset CS = Charset.forName(encoding);
// Создаем пул нитей с 20 рабочими нитями.
private static ThreadPool pool = new ThreadPool(20);

public static void main(String[] args) throws IOException {
ServerSocketChannel ssc = ServerSocketChannel.open();
Selector sel = Selector.open
();
try {
ssc.configureBlocking(false);
ssc.socket
().bind(new InetSocketAddress(PORT));
SelectionKey key = ssc.register
(sel, SelectionKey.OP_ACCEPT);
System.out.println
("Server on port: " + PORT);
while (true) {
sel.select();
Iterator it = sel.selectedKeys
().iterator();
while (it.hasNext()) {
SelectionKey skey = (SelectionKey) it.next();
it.remove
();
if (skey.isAcceptable()) {
SocketChannel channel = ssc.accept();
System.out.println
("Accepted connection from:"
+ channel.socket());
channel.configureBlocking
(false);
// Отделяем события и ассоциированное действие
pool.addTask(new ServeOneJabber(channel));
}
}
}
}
finally {
ssc.close();
sel.close
();
}
}
}
// /:~

Это минимальное обновления для JabberServer.java. Изначально, когда клиент посылает ‘END’, JabberServer не отправляет его назад. Эта версия JabberServer отсылает строку ‘END’ назад. Эти изменения были сделаны, чтобы упростить JabberClient1.java.

//: TIEJ:X1:JabberServer.java
// Очень простой сервер, который просто
// отсылает назад то, что получил от клиента.
// {RunByHand}
import java.io.*;
import java.net.*;public class JabberServer {
// Выбираем порт за пределами диапазона 1-1024:
public static final int PORT = 8080;

public static void main(String[] args) throws IOException {
ServerSocket s = new ServerSocket(PORT);
System.out.println
("Started: " + s);
try {
// Блокируем до возникновения соединения:
Socket socket = s.accept();
try {
System.out.println("Connection accepted: " + socket);
BufferedReader in =
new BufferedReader(new InputStreamReader(
socket.getInputStream()));
// Вывод автоматически выталкивается PrintWriter'ом:
BufferedWriter out = new BufferedWriter(new OutputStreamWriter(
socket.getOutputStream()));
while (true) {
String str = in.readLine();
System.out.println
("Echoing: " + str);
out.write
(str, 0, str.length());
out.newLine
();
out.flush
();
if (str.equals("END"))
break;
}
// Всегда закрываем два сокета...
}
finally {
System.out.println("closing...");
socket.close
();
}
}
finally {
s.close();
}
}
}
// /:~

Еще о работе с сетью

На самом деле есть очень много тем, касающихся сетевой работы, которые могут быть освещены в этой вводной статье. Сетевая работа Java также предоставляет четкую и всестороннюю поддержку для URL, включая обработчики протоколов для различных типов содержимого, которое может быть доступно на Интернет сайте. Вы можете найти полное и подробное описание других особенностей сетевого взаимодействия Java в книге Elliotte Rusty Harold «Java Network Programming» (O’Reilly, 1997).

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.